Erratum: Non-negative Matrix Factorization with Orthogonality Constraints and its Application to Raman Spectroscopy

نویسندگان

  • Hualiang Li
  • Tülay Adali
  • Wei Wang
  • Darren Emge
  • Andrzej Cichocki
چکیده

We introduce non-negative matrix factorization with orthogonality constraints (NMFOC) for detection of a target spectrum in a given set of Raman spectra data. An orthogonality measure is defined and two different orthogonality constraints are imposed on the standard NMF to incorporate prior information into the estimation and hence to facilitate the subsequent detection procedure. Both multiplicative and gradient type update rules have been developed. Experimental results are presented to compare NMFOC with the basic NMF in detection, and to demonstrate its effectiveness in the chemical agent detection problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Clustering Based on Spectral Clustering and Non-negative Matrix Factorization

In this paper, we propose a novel non-negative matrix factorization (NMF) to the affinity matrix for document clustering, which enforces nonnegativity and orthogonality constraints simultaneously. With the help of orthogonality constraints, this NMF provides a solution to spectral clustering, which inherits the advantages of spectral clustering and presents a much more reasonable clustering int...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

On semi weak factorization structures

In this article the notions of semi weak orthogonality and semi weak factorization structure in a category $mathcal X$ are introduced. Then the relationship between semi weak factorization structures and quasi right (left) and weak factorization structures is given. The main result is a characterization of semi weak orthogonality, factorization of morphisms, and semi weak factorization structur...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Two algorithms for orthogonal nonnegative matrix factorization with application to clustering

Approximate matrix factorization techniques with both nonnegativity and orthogonality constraints, referred to as orthogonal nonnegative matrix factorization (ONMF), have been recently introduced and shown to work remarkably well for clustering tasks such as document classification. In this paper, we introduce two new methods to solve ONMF. First, we show mathematical equivalence between ONMF a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • VLSI Signal Processing

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2007